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1. Equatorial waves  
 
Basic theory shows that if weather systems are going to grow by converting potential to 
kinetic energy, their vertical scale, H, and horizontal scale, L, must scale as:  

H/L ~ f/N, 
where f = 2Ω sin (latitude), with Ω the rotation rate of the Earth, is the Coriolis parameter 
and N is the buoyancy frequency, a measure of the vertical stratification of the 
atmosphere. In middle latitudes this gives an aspect ratio of about 1/100. However as the 
equator is approached, the aspect ratio would tend to zero, so that weather systems of a 
fixed horizontal scale would become shallower and shallower in the vertical. This does 
not occur because organized deep convection rather than potential energy is the dominant 
energy source for tropical motion. It determines that the vertical scale for motions is 
essentially that of the troposphere. 

When the tropical atmosphere is subject to diabatic heating, the pressure (mass) and 
wind fields will experience an adjustment process. Atmospheric waves play an essential 
role in this adjustment process. In general, these waves propagate both horizontally and 
vertically. The vertically propagating equatorial waves have important consequences for 
the circulation of the equatorial middle atmosphere (stratosphere). However, for our 
purpose of understanding of the tropospheric large-scale motion, it is conveniently to 
simplify the problem by neglecting vertical propagation and focusing on horizontally 
propagating waves. 

As shown in Appendix A.1, tropical waves in a resting atmosphere without diabatic 
heating and friction can be simplified as standing waves in the vertical direction. Their 
vertical structure can be described by appropriate summation of a family of vertical 
(“normal”) modes. Each vertical mode satisfies the same set of wave equations called 
“shallow water equation” but with different propagation speed (Eq. A.1.5). 

The properties of tropical waves are primarily controlled by two fundamental 
geophysical parameters. One is the Earth’s rotation and the other is atmospheric density 
stratification. The Earth’s rotational effect in the tropics is most conveniently represented 
by assuming the Coriolis parameter f varies linearly with distance from the equator (y) so 
that f=  y, where adydf  2  is the Rossby parameter where a is the radius of 
the Earth. The change of sign of the Coriolis parameter f at the equator results in a special 
class of large-scale atmospheric waves, which are trapped laterally in the equatorial 
region as demonstrated by Matsuno (1966). For this reason, these tropical waves are 
referred to as equatorial waves. 
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Fig. 1 Vertical structures of the vertical pressure velocity for the first four internal modes 
computed for an isothermal atmosphere in which the static stability parameter is 
proportional to the inverse of the pressure square. The vertical pressure velocity vanishes 
at the upper (p=0.1) and lower (p=0.9) boundary Adopted from Wang and Chen (1989). 
 
1.1 Vertical standing modes  

The atmospheric stratification determines the vertical structure of the horizontally 
propagating equatorial waves (Eq. A.1.6) and the corresponding gravity wave 
propagation speed C0 for individual vertical mode (A.1.7). For a given typical 
stratification profile, the vertical velocity profiles of the lowest four vertical modes (m=1, 
2, 3, and 4) are shown in Fig. 1. The gravest baroclinic mode (m=1) has maximum 
vertical velocity in the middle of the atmosphere. The higher baroclinic modes have more 
nodes and shorter wavelengths. For a typical stratification parameter value of the dry 
atmosphere, the phase speed computed for the lowest four vertical modes using (A.1.7) 
are approximately 50, 26, 18, and 13 m/s, respectively. Higher vertical modes have 
slower phase speeds. 
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Fig. 2 Horizontal structures of the equatorial wave solution to the shallow water 
equations on equatorial  -plane for (a) equatorial Kelvin wave k = 1, (b) n =1 Rossby 
wave k = -1, (c) n =2 Rossby wave k = -1, (d) n =0 Rossby-Gravity wave k = -1. All 
scales and fields are dimensionless. The dimension for latitude y is the Rossby radius of 

deformation,   2
1

/0CRc  . Contours are geopotential with interval of 0.2 units. Solid 

(dashed) contours are positive (negative) and zero contours are omitted. The largest wind 
vectors are given in the bottom-right corner. Red (blue) shading is drawn for convergence 
(divergence) with a 0.2 unit interval.  

 
To the lowest order, the large-scale tropospheric motion stimulated by deep convective 

heating can be described by the lowest baroclinic mode (m=1) for which the internal 
gravity wave speed for dry atmosphere is  =50 m/s. Matsuno (1966) and Gill (1980) 

have used the shallow water model that describes this most important vertical mode to 
discuss basic dynamics of the equatorial waves and atmospheric response to specified 
heating. The two parameters, 

0C

  and C0, which reflect the Earth’s rotational and 
gravitational effects, respectively, determine an equatorial trapped length scale 

  2
1

/0 CRc   called the equatorial Rossby radius of deformation. A value of C =50 m/s 

corresponds to an equatorial Rossby radius of deformation of about 15 degrees of latitude.   
0

 
 

4 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Dispersion curves for equatorial waves (up to n=3) in a resting basic state as a 
function of nondimensional zonal wave number k and frequency . Positive (negative) 
wavenumber k means eastward (westward) propagating waves. The thick dashed curve 
indicates zero group velocity.  
 
1.2. Equatorial Kelvin wave   
The eastward-propagating Kelvin wave is a possible free solution to the perturbation 
equations of the shallow water model (A.1.5) provided that the meridional velocity 
vanishes or the motion is exactly in the along-equator direction. The resultant solution of 
the Kelvin wave is given in dimensional form by (A.2.3).  

In general, the Kelvin wave is a special type of gravity wave that is affected by the 
Earth’s rotation and trapped at the Equator or along lateral vertical boundaries such as 
coastlines or mountain ranges. The existence of the equatorial Kelvin wave relies on (i) 
gravity and stable stratification for sustaining a gravitational oscillation, (ii) significant 
Coriolis acceleration, and (iii) the presence of the Equator.   The Coriolis force acting on 
a westerly flow in the equatorial region tends to turn it towards the equator in both 
hemispheres. This acts to pile up fluid in the equatorial region and forms a pressure 
maximum at the equator. The associated poleward pressure gradient force that then 
balances the equatorward Coriolis force, i.e. it leads to the westerly flow being 
geostrophic. Thus the equator acts like a lateral wall to support the Kelvin wave. The 
high (low) pressure is in phase with westerly (easterly) flows (Fig. 2a). The fact that the 
equatorial trapping demands that the pressure and westerly flow are in phase means that it 
works only for the eastward propagating gravity wave, which gives the unique nature of 
the equatorial Kelvin wave. 

At the Equator, Kelvin waves always propagate eastward and have zonal velocity and 
pressure perturbations that decay with latitude on a scale Rc, the equatorial Rossby radius 
of deformation (A.2.3). Figure 2a shows the horizontal structure of the equatorially 
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trapped Kelvin wave solution for a simplified mode 1 vertical structure. Of note is that 
the Kelvin wave propagates without dispersion as for non-rotating gravity waves. 
 
1.3 General dispersion relation  
In addition to the equatorial Kelvin wave solution, other equatorial wave solutions exist. 
The general dispersion relation is derived in the Appendix A.2 and given by (A.2.6). The 
dispersion relation describes the fundamental property of the wave motion by relating the 
wave frequency   and zonal wavenumber k . Here  is assumed to be always positive 
so that k>0 implies eastward propagation relative to the ground with phase speed 

kCx  . 

Figure 3 shows schematically the dispersion relation for all types of equatorial waves 
derived by Matsuno (1966). The special Kelvin wave is represented by the straight line in 
the k>0 domain. The general dispersion relation reflects an infinite family of meridional 
modes, each associated with an integer index n. When , there are two distinct groups 
of waves: high frequency and low frequency waves (A.2.6). Taking , the 

high frequency waves have a period shorter than 1.26 days. The low frequency waves 
have a period longer than 7.3 days.  

1n
-1

0 ms 50C

  
1.4 Low-frequency equatorial Rossby waves and mixed Rossby-gravity waves 
For low frequency waves, it is shown in Appendix A.2 that the dimensional dispersion 
equation (A. 2. 6) can be approximated by 

0
2
**

*

)12( Cnkk 



 . 

This is the same dispersion relation as a Rossby wave in a beta-plane channel except that 
the quantized y-wavenumber has a slightly different form due to the meridional boundary 
conditions. These low-frequency modes are, therefore, called equatorial Rossby waves. 
They occur because  varies with latitude. The higher the index of the meridional mode 
n, the lower the frequency 

f
 .   

In contrast with equatorial Kelvin waves, equatorial Rossby waves always propagate 
westward as shown by the negative sign in the above dispersion relation. However, the 
group speed, which represents the speed at which wave energy propagates, can be either 
eastward or westward. In the dispersion diagram Fig. 3, the slope of the dispersion curves 
represents the corresponding group speed. A positive slope (frequency increases with 
increasing wavenumber) indicates an eastward group speed.  The dashed curve in Fig. 3 
highlights the zero group speed. To the right hand side of the curve of the zero group 
speed, energy associated with Rossby waves propagates westward as indicated by the 
negative slope. These waves have small wave numbers or long wavelengths. Thus, the 
energy associated with long Rossby waves propagates westward while the energy 
associated with short Rossby waves propagates eastward. This property is important when 
considering reflection of Rossby waves at the oceanic lateral boundaries and thermocline 
adjustment in a finite ocean basin. 

For long Rossby waves, , so that 0k  12  nCok  ( ,...2,1n ), implying that 
they are approximately non-dispersive. The dimensional westward phase speed is 

 times the long gravity wave speed . Thus, the fastest long Rossby wave 1)12( n 0C
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(n=1) speed is about one-third of the Kelvin wave speed (and in the opposite direction).  
Figures 2b and 2c depict the horizontal structure for 1n  and 2n  equatorial Rossby 

waves. Here the axes are in units of Rc. Rossby waves are characterized by a geostrophic 
relationship between pressure and the meridional as well as the zonal wind. Strong zonal 
winds are found near the equator for the 1n  mode, which is expected from 
approximate balance between pressure gradient and Coriolis forces (both of them 
approach zero as ). For the 0y 1n  mode, zonal wind u  and geopotential height  
are symmetric about the equator, while  is antisymmetric. On the other hand, for the 

 mode,  and 
v

2n u   fields are antisymmetric about the equator but v  is symmetric. At 
the equator, there is no meridional motion for the 1n  mode, while no zonal motion for 
n=2 mode. The maximum convergence/divergence are located at y=1.25 for the n=1 
mode and y=1.75 for the n=2 mode. 

The high frequency waves are inertia-gravity waves. The behavior of these waves is 
not discussed here. Interested readers are referred to Matsuno (1966).  
 When 0n , the dispersion equation  yields only one 
meaningful root 

 2 2 1  k k / 
 1k  (the curve 0n  in Fig. 3). Of note is that for large  , one 

has k , which is the asymptotic limit of high wave-number gravity waves.  On the 
other hand, for small  , one has 1k , which is the high wavenumber limit of the 
Rossby waves.  For this reason, this particular 0n  mode is called the (Mixed) Rossby-
gravity wave. This mixed mode is unique in the equatorial region. The crossover point 
from k positive to negative, corresponds to a dimensional period of about 2.1 days for 

, and represents a stationary wave in the y direction; the waves with periods 

shorter than 2.1 days (

-1
0C ms 50

k  0 ) propagate eastward while waves with periods longer than 
2.1 days ( k  0 ) propagate westward. The energy associated with the Rossby-gravity 
waves, however, is always eastward (Fig. 3). 

Figure 2d shows the horizontal distribution of velocity and pressure for westward 
moving Rossby-Gravity waves. The pressure and zonal velocity are antisymmetric about 
the equator while the meridional component v  is symmetric. The largest meridional flow 
occurs at the equator (cross-equatorial flow). The largest convergence/divergence occurs 
at y=1. 

The high frequency waves (large ω) are inertio-gravity waves. These are almost 
symmetric in their eastward and westward propagation. 
 
 
2. Forced steady motion  
 
The latent heat released during convection drives the atmospheric circulation while the 
strength and the location of convection depend on large scale circulation. In this section, 
this complex interaction is simplified to a one-way problem as we examine how the 
tropical atmosphere responds to a given heat source (pattern and strength). 
 
2.1 The wave perspective 
To illustrate the fundamental physical processes, Gill (1980) used a single sinusoidal 
vertical mode, shallow water equation model on an equatorial  -plane (Eq. A.2.1). This 
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simplification is based on the consideration that the heating released in the middle 
troposphere stimulates primarily the lowest baroclinic vertical mode. Gill considered a 
steady-state motion in a resting basic state forced by a given heating Q. The forced 
motion is sufficiently weak that it can be treated using linear dynamics. The friction takes 
the form of Raleigh damping (a linear drag that is proportional to wind speed) and the 
thermal damping takes the form of Newtonian cooling (a heating rate proportional to the 
temperature perturbation from its basic equilibrium state). For simplicity, the momentum 
and thermal damping rates are assumed to have the same time-scale, -1, everywhere. 
Taking long wave approximation (i.e., neglecting the high frequency inertio-gravity 
waves, Gravity-Rossby waves and the short Rossby waves), the nondimensional 
governing equations can be then be derived from (A.2.1), which takes the following form: 

            
x

yvu




 ,                                                (2.1a) 

                            
y

yu






,                   (2.1b) 

                           Q
y

v

x

u









 )( .           (2.1c) 

Here Q is a nondimensional heating rate. A positive sign for Q gives u, v,   at the 
surface of the model atmosphere. The tropopause u, v,   have opposite signs from their 
corresponding low-level counterparts. The vertical velocity is given by (2.2)  

                           







 Q
y

v

x

u
)( .                                                 (2.2) 

The analytical free wave solutions can be derived from (2.1) after replacing damping 
terms with local rates of change and dropping the heating term. The free wave solutions 
consist of equatorial Kelvin waves, long Rossby waves and the long Rossby-gravity wave. 
It is expected that these types of waves will adjust the geopotential and winds toward the 
imposed diabatic heating and reach a steady state under the damping. This steady state is 
the solution of (2.1).   

To derive the analytical solution of (2.1), it is suffice to eliminate u and   from (2.1), 
which leads to a single equation for v: 

                           
y

Q

x

Q
yvy

x

v

y

v














  2

2

2

.                                        (2.3) 

The series solution for v under giving heat forcing, Q, can be expressed as 

                            ,                                         (2.4a) )()(),(
1

yDxvyxv m
m

m






                            .                                        (2.4b) )()(),(
1

yDxQyxQ
m

mm






In (2.4) Dm (y) is the Weber-Hermite function (see Eq. A.2.7a). It can be shown that the 
coefficients vm (x) can be solved from the following equation by assuming the 
coefficients for each order of m vanish:            
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Gill presented two basic solutions, one for an equatorially symmetric isolated heating 
Qs and the other for an equatorially antisymmetric dipole heating Qas, i.e.,  

                          )()()(),( 2

2

0 xFexFyDyxQ
y

s
 ,                                (2.6) 

                          )(2)()(),( 2

2

11 xFyeyDxQyxQ
y

as
 ,                                (2.7) 

 
where           

kxxF cos)(           ( x < L ) 

0)( xF                  ( x >L ) 

 

 
Fig. 4 Gill’s solution for (a) heating symmetric about the equator, (b) heating 
antisymmetric about the equator. 

 
Figures 4a and 4b show the solution of Gill model for the symmetric heating (2.6). The 

upward vertical motion basically coincides with the imposed heating field as implied by 
Eq. (2.2). Gill interpreted this circulation pattern in terms of the propagation of the large-
scale equatorial Kelvin and Rossby waves. The low-level easterlies to the east of the 

9 
 



heating are due to a Kelvin wave propagating eastward in the presence of the damping. 
The low-level westerlies to the west of the heating are the result of westward propagation 
of the damping n=1 Rossby wave. Since the Kelvin wave has no meridional component, 
the easterlies are more tightly trapped to the equator. On the other hand, the Rossby wave 
consists of two cyclonic gyres symmetric and straddling the Equator.    

Along the equator (v'0) Eq. (2.1) can be approximated as   

-x - u’ = 0. 
Integrating along the equator, we obtain 

02a u’dx= -02a x dx/=0. 
The above constraint means that the integral of the zonal wind due to the Rossby waves is 
balanced by the integrated zonal wind associated with the Kelvin waves. Since Kelvin 
waves move eastward at a speed roughly three times that of the fastest moving Rossby 
wave. Thus, when a steady state is reached, the damping distance of the Kelvin waves is 
about three times larger than the damping distances of the Rossby waves. That creates a 
wider region of easterly winds to the east of the heating than the westerly wind region to 
its west. The above equation also implies that the zonal wind associated with Rossby 
waves must be stronger than the zonal winds associated with Kelvin waves.  

Under the long-wave approximation, Rossby waves occur only to the west of the 
forcing region and Kelvin waves only to the east. In the presence of the short Rossby 
waves, the energy of the short Rossby waves can propagate eastward because of 
dispersion. Also, if the damping is not too strong, the eastward propagating Kelvin waves 
and the westward propagating Rossby waves can travel far enough to interact with each 
other due to the cyclic nature of the real domain. 

Figures 4c and 4d show Gill's solution for the antisymmetric heating. The major ascent 
and descent regions tend to coincide with imposed heating and cooling, respectively. 
There is a cyclonic circulation in the heated hemisphere and anticyclonic circulation in 
the cooled hemisphere at low-levels. In this case the excited Rossby-gravity waves are 
confined within the forcing region, and the Rossby waves propagate westward. There is 
no response to the east of the heat source because of the absence of equatorially 
symmetric eastward propagating Kelvin waves. Along the equator there are northerly 
(southerly) winds in the lower (upper) level, which means that mass transported from the 
cooling (heating) hemisphere to the heating (cooling) hemisphere in the lower (upper) 
level. A circulation pattern more relevant to the Asian summer monsoon may be obtained 
using a thermal forcing that is the sum of the symmetric and antisymmetric forcing. In 
this situation, the imposed heating field is asymmetric about the equator with the heating 
mainly in the northern Hemisphere. If the equatorial Rossby Radius of deformation  is 

taken to be 10o of latitude, the solution corresponds to maximum heating at  and 
covering of longitude. This heat source is similar to the summer monsoon heating in 
the Bay of Bengal to Philippines except that the latter is centered near . The solution 
corresponding to this “summer monsoon” heating can be obtained by adding the solution 
shown in Figs. 4a, and 4b and is shown in Figs. 5a and 5b. 

cR

N10
40

N15

There is a low-level cyclonic circulation in the heating hemisphere to the west of the 
heating, due to westward propagation of the long Rossby waves. The flow pattern to the 
east of the heating region is due to the eastward propagation of the Kelvin waves. Thus 
the winds are easterlies toward the heat source and tend to parallel to the equator and 
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symmetric about the equator. As stated above, they move three times faster than the long 
Rossby waves, and thus cover a larger longitudinal range.  

 

 
Fig. 5 Gill’s solution for asymmetric heating, which is the sum of the heating shown in 
Figs. 4a and 4b. Shown also is the zonal mean circulation and meridional mean zonal 
circulation.  

 
In the Southern Hemisphere the cooling and equatorial warming induced solution 

shows a weak trough close to the equator and an anticyclonic circulation poleward of this. 
The entire circulation pattern bears close similarity to the summer circulation in the 
Indian-Pacific sector.  

Figures 5c and 5d show the meridionally and zonally averaged circulations associated 
with the asymmetric heating, respectively. The meridionally averaged zonal circulation is 
referred to as Walker cell (Bjerknes 1966), which comprises east-west atmospheric 
circulation cells along the equatorial belt. Analogous to observations, the dominant 
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component is the Pacific branch, which consists of easterly winds at the lower 
troposphere, westerly winds at the upper troposphere, rising motion over the western 
Pacific, and subsidence over the eastern Pacific. The zonal mean meridional circulation is 
referred to as “Hadley cell” (Lorenz 1967). The Hadley circulation exhibits a rising 
branch over the NH monsoon trough latitude (the major surface low pressure) and 
sinking branch over the SH cooling region. It is of interest to note a secondary low 
pressure just south of the equator. This Hadley cell is a result of the antisymmetric 
component of heat forcing.  

It has already been said that the longitudinal extent of the Rossby wave structures to 
the west and the Kelvin wave structure to the east depend on the wave speeds and the 
damping time scale, and that if this time-scale is not short enough there will be 
interference through propagation around the equator. It is also clear from 2.2 that outside 
the heating region, the vertical motion is totally dependent on the damping. Therefore the 
whole meridionally averaged structure shown in Fig. 5c, and in particular the Walker Cell, 
depends on the damping. The figures shown here assume a dimensional damping time-
scale of about 2.5 days. It is interesting that to produce realistic pictures this simple 
model requires such large thermal and momentum damping, not just in the boundary 
layer but throughout the depth. 
 
2.2 The vorticity and thermodynamic equation perspective 
Assuming that advection by any basic state may be neglected the undamped vorticity 
equation may be written 

z

w
fv

t 




 

.                                                     (2.8) 

Here   is the vertical component of relative vorticity, the β term represents the 
meridional advection of planetary vorticity and the term on the right hand side represents 
the creation of cyclonic (anti-cyclonic) vorticity by the stretching (shrinking) of the 
vorticity due to the Earth’s rotation. Scale analysis shows that the thermodynamic 
equation may be written as 

QwN 2 .                                                       (2.9) 
Here the left had side term represents adiabatic cooling (warming) due to ascent and 
expansion (descent and compression). The heating is again represented by Q, which 
would be proportional to the value used before in (2.1c).  

Consider a region of large-scale, deep convective heating in the equatorial region as 
sketched in Fig. 6. Eq. (2.9) shows that there is ascent in the region of heating, with 
adiabatic cooling balancing the diabatic heating. The stretching term in the vorticity 
equation then implies the tendency to create cyclonic circulations in the lower 
troposphere and anticyclonic circulations in the upper troposphere, as shown in Fig. 6a. 
Under the action of the β-effect, which is described the in the vorticity equation, these 
circulations tend to drift westwards just as occurs in Rossby waves. The equilibrium 
situation is reached when they have drifted to the point shown in Fig. 6.b where there is a 
balance in the convective region: 

z

w
fv



 .                                   (2.10) 
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(a) Initial (b) Equilibrium 

EQ

EQ
 

Fig. 6 Schematic diagram showing response of the tropical atmosphere to an imposed 
deep cumulus heating: (a) Initial tendency, and (b) equilibrium solution. If the heating 
were located in the Southern Hemisphere, the resultant flows would be a mirror image. 

 
This is often referred to as Sverdrup balance. For example in the upper troposphere, the 

shrinking of vortex tubes is balanced by the advection of larger basic vorticity from 
higher latitudes. Combining Eqs. 2.9 and 2.10 leads to the approximate relationship: 

z

Qf
v

z 




 .                         (2.11) 

As discussed by Wu et al. (1999) and Liu et al. (2001) this form emphasizes the 
importance of the vertical distribution of the heating. 

If the heating is away from the equator then the vortex stretching is only in that 
hemisphere and so the circulations are only created there. 

In terms of the solutions determined using the wave approach, it is clear that the 
vorticity arguments have given a complementary perspective on the formation of the 
Rossby wave circulations to the west of the heating. For a different perspective on the 
Kelvin wave response to the east we take account of the cyclic nature of the equatorial 
domain and consider a case with zero zonally averaged heating. In this case small, 
uniform cooling at other longitudes compensates the local convective heating. As 
illustrated in Fig. 7a, the cooling then leads to descent in this region, and vortex 
stretching at upper levels and shrinking at lower levels. The consequent zonally elongated 
upper level cyclones and lower level anticyclones are dominated by westerly and easterly 
winds, respectively.  These circulations again tend to drift westwards to give Sverdrup 
balance with, in the cooling region, poleward components of the winds in the upper 
troposphere (to the east of the heating region) and equatorward components in the lower 
troposphere. Damping in the vorticity equation would act to reduce the westward drift of 
all the circulations. The equilibrium state is shown in Fig. 7b). 
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These vorticity arguments give a perspective on the motions forced by large-scale deep 
convective heating that is complementary to that given by the wave approach. They also 
show the generality of the nature of the particular solutions obtained using that approach.  

 

(a) Initial 

EQ 

 
Fig. 7 Schematic diagram showing the upper-level circulation induced by both an 
imposed heating and the corresponding compensated cooling outside of the heating 
region: (a) initial tendency, and (b) equilibrium solution. The lower-level circulation 
would be the same except with opposite sense. If heating spreads into the Southern 
Hemisphere the circulation would be a mirror image.  
 
 
3. Effects of mean flows on equatorial waves and forced motion 

The theories of Matsuno (1966) and Gill (1980) discussed in sections 1 and 2 deal with 
perturbation motions in a resting environment. In reality, the equatorial waves induced by 
deep convective heating penetrate the entire troposphere where the three-dimensional 
background flows can have significant modification on the behavior of the waves. 
Observed anomalies associated with monsoon variability are departures from monsoon 
background flow. Thus, understanding of how the planetary scale background flows alter 
the properties of the equatorial waves is fundamental for explaining various aspects of 
monsoon variability. 

While the tropical seasonal mean flow has a complicated three-dimensional structure, 
to the lowest order of approximation, one may consider a basic zonal flow, U(y, p), that is 
in geostrophic balance and varies with height and latitude. The question to be addressed 
is how the meridional and vertical shears of the zonal mean flow affect the properties of 
the horizontally propagating low-frequency waves. The separation of variables to give a 
vertical mode and the shallow water equations in the horizontal is only possible for a 

EQ 

(b) Equilibrium 
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resting atmosphere basic state. The possible effects introduced by horizontal a vertical 
shears will be discussed in this section.   

The likely effects of the meridional shear of such a zonal flow are suggested by the use 
of a modified shallow water model. The modified model would be the same as (A.1.5) 
except that the  -term in the zonal momentum equation should be replaced by the 

meridional gradient of the absolute vorticity of the basic flow, (  - 22 yu  ). Thus, the 
meridional shear influences the equatorial waves through latitude-dependent zonal 
advection (Doppler-shift) and through changing the basic state vorticity gradients. 
Theoretical analysis indicates that the effect of the realistic meridional shear on low-
frequency waves is generally moderate. The shear-induced change of the absolute 
vorticity gradients makes baroclinic Rossby modes more tightly trapped near the equator 
(Wilson and Mak 1984). The trapping effect is significant for short waves but negligible 
for planetary-scale (wavenumber 1 to 4) waves (Wang and Xie 1996). The Doppler-shift 
effect at the latitude where the geopotential reaches maximum amplitude affects the wave 
propagation speed and has a major impact on the group velocity (Hoskins and Jin 1991). 
The meridional shear affects equatorial Kelvin waves in a way similar to that in which it 
affects the Rossby waves except that the Kelvin waves are more trapped near the equator 

if 022  yu , whereas they may be less trapped when 02y2 u . The meridional 
shear can also make Kelvin waves become weakly dispersive due to the wavelength-
dependent modification of their meridional structure and latitude-dependent zonal 
advection (Wang and Xie 1996). 

In contrast to the effects of the meridional shear, the vertical shear of the zonal mean 
flow can considerably change the behavior of the equatorial waves in a resting 
atmosphere and atmospheric response to a given heat source without mean flows. In the 
presence of a summer mean flow, Webster (1972) showed that the atmospheric response 
in the vicinity of heat forcing has a baroclinic structure but displays a barotropic structure 
away from the forcing region. Kasahara and Silva Dias (1986) noticed the vertical shear 
of the basic flow permits a coupling of the external and internal modes.  Lim and Chang 
(1986) demonstrated this coupling process using an f-plane model.  

In this section, an idealized model on equatorial  -plane is used to examine the 
impacts of a vertically sheared zonal flow, U(p), on low-frequency equatorial waves. In 
the presence of vertical shear, the different vertical modes are coupled by the shear and 
no longer separable. Wang and Xie (1996) have developed a simple two-level model 
describing equatorial waves propagating through a zonal flow with a constant vertical 
shear. The derivation is presented in Appendix A3.  

The two-level model represents two vertical modes, a barotropic mode and a baroclinic 
mode (A.3.2), which are governed by Eq. (A.3.3) and (A.3.4), respectively. The 
barotropic mode is essentially a Rossby wave modified by a forcing arising from the 
baroclinic mode acting on the vertical shear. The baroclinic mode is governed by a 
modified shallow water equation including the feedback from the barotropic mode. The 
forcing terms on the r.h.s. of Eqs. (A.3.3) and (A.3.4) indicate interactions between the 
barotropic and baroclinic modes in the presence of vertical shear. 

Linear wave solutions of the form 
     tkxieVUvu  

  ,,,Re,,,  
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can be shown to satisfy a set of ordinary differential equations. With Matsuno’s (1966) 
meridional boundary conditions, one can determine the meridional structures of the 
barotropic and baroclinic modes and the dispersion relation can be determined. 
 

 
Fig. 8 Meridional structures of the geopotential field for (a) baroclinic and (b) barotropic 
Rossby wave mode (n=1) calculated using an equatorial  -plane. Panels (c) and (d) are 
the same as in (a) and (b) except computed from a spherical coordinate model (Adopted 
from Wang and Xie 1996). 

(b)  Barotropic Rossby mode (a)  Baroclinic Rossby mode 

(d)  Barotropic Rossby mode (c)  Baroclinic Rossby mode 

 
3.1. Effects of vertical shear on the Rossby wave structure and propagation  
Figure 8 shows meridional structures of the geopotential (thickness) field of the 
barotropic (baroclinic) modes for the n=1 (most equatorial trapped) Rossby waves. Here 
a westerly vertical shear means that westerly wind increases with height or easterly wind 
decreases with height. In the presence of the vertical shear, the baroclinic mode remains 
equatorially trapped (Fig. 8a). In contrast, the barotropic mode extends poleward with 
geopotential extremes occurring in the extratropics around three Rossby radii of 
deformations away from the equator (Fig. 8b). To confirm the results derived from the 
equatorial  -plane, a parallel analysis on the spherical coordinates was carried out 
(Wang and Xie 1996). The results show that the maximum geopotential perturbation of 
the barotropic mode is found near  latitude in the spherical coordinate model (Fig. 8d). 
Due to the feedback of the barotropic mode, the baroclinic mode also has significant 
amplitude around 60o latitude (Fig. 8c).   

57
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The lowest baroclinic mode in the absence of mean flow vertical shear exhibits a 
precisely out-of-phase flow field in the upper and lower levels. The presence of the 
vertical shear modifies the vertical structure of the waves dramatically.  

 

 
Fig. 9 Horizontal structure of the n=1 Rossby waves with a wavelength of 10,000 km. 
Geopotential and wind patterns in the upper and lower troposphere are displayed for (a) 
U　=5 m/s (westerly vertical shear) and (b) UT= -5 m/s (easterly vertical shear). The 
abscissa denotes zonal phase in units of π. Adopted from Wang and Xie (1996).  

 
Figure 9 presents three-dimensional structure of the n=1 Rossby waves in a westerly 

vertical shear (Fig. 9a) and an easterly vertical shear (Fig. 9b) in comparison with the 
case without the vertical shear (Fig. 9c). In a westerly (easterly) shear, the Rossby waves 
have larger amplitude at the upper (lower) troposphere. This is particularly evident in the 
tropical regions. Poleward about two Rossby radii of deformation, the barotropic mode 
dominates and the sign of the geopotential perturbation there tends to be out of phase 
with that in the tropical region. Obviously, the vertical shear has changed the vertical 
structure of the Rossby wave drastically. The reason is that the nature of coupling of the 
two vertical modes depends on the sign of the vertical shear (A.3.3 and A.3.4). Wang and 
Xie (1996) has shown that for a constant vertical shear, one of the vertical modes may 
have a structure that is independent of the sign of the shear, but the remaining mode must 
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then have a structure that is dependent of the sign of the vertical shear. However, no 
matter which mode is assumed to be independent of the sign of the vertical shear the two 
vertical modes are in phase in the westerly shears, whereas they are 180o out of phase in 
easterly shears. Thus, the vertical shear creates a vertical asymmetry in the Rossby wave 
structure.  

The presence of vertical shears also slows down the westward propagation of the 
Rossby waves regardless of the sign of the vertical shear. The reason is that Rossby 
waves tend to reside in the westerlies and have an elevated (lowered) steering flow level 
for the Rossby waves in a westerly (easterly) shear. If the vertical mean zonal flow 
vanishes, the resultant mean zonal steering flow is thus eastward in both the westerly and 
easterly shears, which acts to reduce propagation speed of the Rossby waves. 

The modification of the structure and propagation depends on strengths of the vertical 
shear and the wavelength. For a given shear, the structures of the short waves are more 
significantly modified and so are their phase speeds. In reality, the vertical shear of the 
zonal mean flow may also change with latitude. In the presence of meridional variation of 
the vertical shear, the Rossby waves will be enhanced in the vicinity of the latitudes 
where the vertical shear is strengthened, suggesting the importance of regional vertical 
shear in modification of the in situ wave characteristics.   

The above discussion applies to stable Rossby waves. Further analysis has shown that 
vertical shear has profound influences on the instability of the moist equatorial Rossby 
waves (Xie and Wang 1996). When the vertical shear of the mean zonal flow exceeds 
certain critical value, the most trapped equatorial Rossby waves become unstable by 
extracting mean flow available potential energy. When convective heating is organized 
by and feedback to the equatorial Rossby waves, the preferred most unstable wavelength 
increases with increasing vertical shear and decreases with increasing heating intensity, 
ranging typically from 3000 to 5000 km.  

Without boundary layer friction the Rossby wave instability does not depend on the 
sign of the vertical shear. However, in the presence of a boundary layer, easterly 
(westerly) shears enhance (suppress) the moist Rossby wave instability considerably. The 
reason is that an easterly shear confines the wave to the lower level, generating a stronger 
Ekman pumping-induced heating and meridional heat flux, both of which reinforce the 
instability. The opposite is true for a westerly shear. The effects of vertical shear on the 
westward propagating Rossby-Gravity waves are similar to those for Rossby waves. 
However, the vertical shear has little impacts on the equatorial Kelvin waves (Wang and 
Xie 1996). 

 
3.2. Extratropical barotropic response induced by equatorial heating 
One of the fundamental impacts of the vertical shear is excitation of prominent barotropic 
Rossby wave motion through interaction with the gravest baroclinic Rossby waves. This 
vertical shear mechanism may help explain how an equatorial heating generates a 
significant extratropical barotropic response.  

An internal heating sitting on the equator can directly generate baroclinic Rossby mode 
(A.3.4). It can be shown from (A.3.3) that the vorticity equation of the barotropic mode is 
given by  

                     
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Thus, the meridional variation of baroclinic divergence and longitudinal variation of the 
baroclinic vorticity acting on the vertical shear of the mean flow represents a source of 
forcing for the barotropic motion. Figures 9c and 8d show that the barotropic Rossby 
waves are not equatorially trapped; rather they have maximum amplitudes in the 
extratropics. Hence, an equatorial heating can indirectly generate extratropical barotropic 
Rossby waves, providing a mechanism by which equatorial heating can generate 
extratropical teleconnection patterns.  
 
3.3. Asymmetric Rossby wave response to equatorial symmetric heating 
In a resting atmosphere, an equatorial symmetric heating can only induce equatorial 
symmetric response in the pressure and zonal wind field. As discussed earlier, the vertical 
shear can induce remarkable equatorial asymmetry for the n=1 Rossby waves, which in 
the absence of the vertical shear has equatorial symmetric pressure and zonal winds. The 
Asian summer monsoon is characterized by significant vertical easterly shears over South 
Asia. Because the monsoon easterly shear is primarily confined to the NH, the unstable 
n=1 Rossby wave can become markedly trapped in the NH (Xie and Wang 1996). Under 
influence of such a summer mean monsoon circulation, even a heating that is symmetric 
about the equator can possibly induce considerably asymmetric Rossby wave response 
with major circulation located in the easterly vertical regions (i.e., the NH).  

To validate the inference deduced from the theoretical model, a numerical experiment 
with an anomaly atmospheric general circulation model (AGCM) was performed (Wang 
et al. 2003). A multi-level linearized AGCM is chosen because more realistic three-
dimensional basic states can be specified. 3-D summer (JJA) and winter (DJF) mean 
basic states were prescribed in an equally spaced five-level sigma coordinate. A strong 
momentum damping with a decaying time scale of one day is applied in the lowest model 
level to mimic the planetary boundary layer dissipation, while a Newtonian damping of e-
folding time scale of 10 days is applied to all levels in both momentum and 
thermodynamic energy equations.  

Figure 10 illustrates the response of the lowest-level winds to a prescribed ideal 
equatorial symmetric cooling. This cooling is motivated by mimicking the anomalous 
cooling associated with the maritime continent subsidence during El Nino. In the 
presence of the northern summer mean flow, the atmospheric response is obviously 
asymmetric to the equator: A strong low-level anticyclone anomaly appears to the north 
of the equator (Fig. 10a). The anomalous anticyclone extends to the west of the heat sink, 
covering the entire South Asian monsoon region. On the other hand, with specification of 
a resting background flow, the model produces a symmetric response with twin 
anticyclones residing on each side of the equator (figure omitted). When the mean winter 
(DJF) basic flow is specified, the model simulates a stronger anticyclonic response in the 
SH, consistent with the distribution of the easterly vertical shear (Fig. 10b). The 
numerical results shown in Fig. 10a provides an explanation why during ENSO 
developing phase the major monsoon anomalies are dominated by an anticyclonic ridge 
located north of the equator, while the response in the SH is weak (Wang et al. 2003). 
Using an intermediate atmospheric model, Wang and Xie (1997) identified the equatorial 
asymmetric response is primarily produced by the effects of the vertical shear in the 
seasonal mean state. During the mature phase of El Niño, the suppressed convection over 
the maritime continent and Australian monsoon region would favor anomalous 
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anticyclones forming over the tropical southern Indian Ocean, similar to the solution 
shown by Fig. 10b.  

 

 
Fig. 10 The low-level wind response to an equatorial symmetric heat sink simulated by 
using an anomaly atmospheric general circulation model with specified basic state of (a) 
boreal summer (JJA) mean and (b) boreal winter (DJF) mean climatological flow. The 
contours represent horizontal distribution of the heat sink strength at an interval of 
0.4oC/day with maximum amplitude of the heating rate of –2 ºC/day, witch is located in 
the middle troposphere.  
 
3.4. Wave energy accumulation in the equatorial westerly duct  
One of the important impacts of the vertical shear on equatorial Rossby waves is that the 
westerly (easterly) shear favors trapping wave kinetic energy to the upper (lower) 
troposphere (Fig. 9). This may be pertinent to interpretation of the in-phase relationship 
between the transient kinetic energy and the equatorial mean flow in the upper 
troposphere as observed by Arkin and Webster (1985), which is also known as 
accumulation of wave energy in the upper tropospheric westerly duct (a zonal flow with 
westerly vertical shear). On the other hand, in a region of easterly vertical shear 
(monsoon regions), the Rossby waves tend to be trapped in the lower troposphere, which 
also agree with the behavior of perturbations in the summer monsoon trough region. 
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Appendix 
 
A.1 Vertical modes and shallow water equations 
 
a. Governing equations on the equatorial beta-plane  
The Earth’s rotational effects on dynamic processes in the tropics are most easily 
analyzed by utilizing an equatorial  -plane approximation, in which the Coriolis 

parameter f=  y, where adydf  2  is the Rossby parameter with   and a the 
rotation rate and the radius of the Earth respectively. 

The physical principles that govern the hydrostatic perturbation motion consist of 
conservations of momentum (A.1.1a,b), mass (A.1.1c), thermodynamic energy (A.1.1d), 
and water vapor (A.1.1e). These principles expressed in a vertical pressure (p) 
coordinates on an equatorial  - plane are 
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In Eq. (A.1.1) (x, y) is the distance in the eastward and northward direction, the 
dependent variables, u, v,  and  , denote zonal and meridional wind, vertical 
pressure velocity, and geopotential height, respectively; Fx and Fy denote frictions 
and the terms N(u), N(v), N( p / ), and N(q) represent nonlinear advections. The 
static stability parameter S(p) describes effects of atmospheric stratification; Qc 
expresses diabatic heating rate per unit mass, and R and Cp are the gas constant of 
the air and the specific heat at constant pressure, respectively. More detailed 
explanation of diabatic heating and moisture eq. (A.1.1e) will be given in section 
A.4. 

 
b. The vertical mode and the shallow water equation  
To better understand the three-dimensional, large-scale tropical atmospheric motion, it is 
helpful to begin with an idealized model in which the vertical structure of the “normal” 
modes can be determined and the corresponding horizontal motion can be described by 
simple equations. For this purpose, consider frictionless, dry, adiabatic and small 
amplitude perturbation motion in a quiescent environment, so that Eq.A.1.1 becomes:  
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Because the static stability parameter S varies primarily in the vertical direction, let us 
assume is a function of pressure only that can be quite well approximated by  pS

22)( pCpS s . Here 2
1

)( sss pSpC   represent a reference gravity wave speed at the 

surface p = ps, which is about 70 m/s for typical dry tropical atmosphere. Then the 
solutions of (A.1.2) can be expressed as  

 

                          )( pW  (A.1.3a) 
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where W (p) describe the vertical structure of the motion, whereas U, V, , and   are 
only functions of x,  y,  and t. Substituting (A.1.3) into (A.1.2), one finds that the W(p), 
satisfies 
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and the horizontal motion U, V,  , satisfy 
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where  is a ‘separation constant’. Eq. (A.1.5) describe horizontal wave propagation 

and is referred to as ‘shallow water equation’ because it is similar to the equation that 
describes the propagation of the long gravity surface waves with a speed . 

2
0C

0C

Of note is that the vertical structure of atmospheric motion may be expressed in terms 
of the sum of many vertical ‘normal’ modes. For simplicity, assume an atmosphere being 
confined by a lower surface at p=ps and a ‘lid’ at the tropopause,  p=pu at which we 
impose =0 . The normal mode solution of (A.1.4) with the given boundary conditions 
yields (A.1.6) a family of infinite number of vertical modes  with an arbitrary 

amplitude (Wang and Chen 1989):                     
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where    

)(ln usm ppimb         .                                                               (A.1.6a) 

The phase speed corresponding to the mth vertical mode is  
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We note that the vertical structures and the gravity wave phase speed of each vertical 
mode are solely determined by the basic state stratification.  

 
A.2 Equatorial waves  

Using   2
1

/0 CRc   (the equatorial Rossby radius of deformation),   2
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0
 C , and 

as characteristic scales for the horizontal length, time, and geopotential height, 

respectively, one can obtain the following non-dimensional shallow water equation for 
description of a single vertical mode 
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where the prime denotes non-dimensional quantities. The dimensional variables may be 
returned by multiplication of their corresponding characteristic scales. 

Consider first the wave motion without meridional wind (Kelvin waves). The system 
of equation (A.2.1) becomes 
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The combination of (A.2.2a) and (A.2.2c) yields a wave equation, which has a general 
solution, , where  is an arbitrary function. From (A.2.2a), )()( yYtxFu   F     u . 

Using (A.2.2b), one can obtain Y y . Only the minus sign is valid because 
the other choice leads to an unbounded solution for large 

Y e y( ) /0
2 2( ) 

y .  The solution of the system 
is in dimensional form (A.2.3)  
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2 2/
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In addition to the equatorial Kelvin wave solution, (A.2.1) has other equatorial wave 
solutions. Since the coefficients of (A.2.1) only depend on y, the solution for zonally 
propagating wave disturbance can be expressed as the form of normal modes  

( , , ) Re( ( ), ( ), ( )) (    u v U y V y y ei kx t  )            

where ‘Re’ means taking real part, k is zonal wave number and   the frequency which 
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assumed to be always positive so that k>0 implies eastward propagation relative to the 
ground with phase speed kCx  , U y V y y( ), ( ), ( ) denotes the meridional structure 

and are assumed to be bounded, as y    (Matsuno 1966). This condition is necessary 
as the equatorial β-plane is not a valid approximation to spherical geometry for large y. 

Substituting the normal mode solution into (A.2.1) and eliminate  leads to 
an equation for V(y): 
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Note that in deriving Equation (A.2.4),  was assumed, which excluded the 
equatorial Kelvin waves. 
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Equation (A.2.4) along with the boundary condition (V(y) is bounded as ) poses 
an eigenvalue problem, which is the same as the Schrödinger equation for a simple 
harmonic oscillator. Solution of Eq. (A.2.4) that satisfy the condition of equatorial 
trapping exist if and only if  

y  

12/22  nkk  , n = 0, 1, 2,…   (A.2.5) 
Equation (A.2.5) is the non-dimensional dispersion equation, which describes the 

relationship between the frequency   and wavenumber k . Figure 3 shows the dispersion 
curve of the equatorial waves. When , the exact dispersion relation is given by 1n
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A real (number) k , which corresponds to propagating neutral waves (non-decaying), 

requires that either   211221  nn  or 211 .      Thus, there 

are two distinct groups of waves: one is high frequency waves,   1 1 2/ =1.71, and 

the other is low frequency waves,   1 1 2/ =0.29 (Fig. 3). When , the 
dispersion equation  yields only one meaningful root 

0n
 2 2 1  k k /   1k  

(the curve  in Fig. 3). 0n
Differentiating the dispersion equation, (A.2.5) with respect to k , one finds that the 

group speed in the x-direction is  
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which vanishes at 2 1k    (if  ). The curve 2 02  k / k21  is shown in Fig. 
3 by the dashed line, which represents zero group speed. 

The meridional structures of the zonal propagating Rossby, inertio-gravity and Rossby-
gravity waves are described by the solutions of (A.2.4), which are the Weber-Hermite 
functions :  

  ,  n = 0, 1, 2,…   ,  (A.2.7) )()()( 2/2
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The solutions for can be obtained from (A.2.1) in terms of (A.2.7). )(),( yyU 
The solution for the n=0 mode (the mixed Rossby-gravity waves),  1k , and 
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the structure is given by 

 ,     (A.2.8a) ])/1[(2/
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A.3 Theoretical model for study of mean flow effects on equatorial waves 

Assume that the zonal mean flow )( pu satisfies geostrophic balance yuy   . The 
equations governing inviscid, hydrostatic perturbation motions are (A.3.1), in which the 

meanings of the other symbols are the same as in (A.1.1) except )( pu . 
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To illustrate basic mechanisms, a simple two-level model is adopted (Philips 1954). 
Writing the momentum and continuity equation (A.3.1a,b,c) at the upper (p1) and lower 
(p3) levels and the thermodynamic equation in the middle (pm) level, one can obtain a set 
of governing equations in this two-level model. To facilitate elaboration of dynamic 
mechanisms, it is more convenient to introduce a barotropic and a baroclinic component 
(mode) defined by (A.3.2).  

                   231 AAA  ,   231 AAA                     (A.3.2) 

In (A.3.2), quantity A represents any dependent variable and  and  are referred to 
as the corresponding barotropic and baroclinic mode, respectively. For the wind and 
geopotential fields, they describe, respectively, the vertical mean wind (geopotential) and 
the thermal wind (thickness). The governing equations are then written using the two 
vertical modes and are non-dimensionalized using the same scale as those used in 
deriving (A.2.1). In the two-level model, the internal gravity wave speed 
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  2
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22
mm SpC  .  

Since the barotropic mode is nondivergent, a barotropic stream function can be 
introduced so that 


yu    and xv   . It can be shown that the barotropic 

stream function satisfies  
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The baroclinic mode is governed by (A.3.4). 
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A.4 An one and one half layer model including interactive diabatic heating  
Representation of interactive diabatic heating is an extremely challenging problem. Here 
we try to represent the convective heating effect in a rudimentary way, mainly for the 
convenience of theoretical analysis. This model, as will be shown, is an extension of 
Matsuno model that includes diabatic heating and boundary layer dynamics. 

In the thermodynamic equation (A.1.1d), two diabatic heating terms are included: the 
condensational latent heat and a simplest form of radiation cooling, Newtonian cooling, 
with a constant coefficient . The condensational heating rate Qc must be constrained by 
precipitation rate, i.e., the column integrated condensational heating rate is linked with 
the precipitation rate: 

  sp

up crc dppQ
g

PL
1 ,     (A.4.1) 

where Lc is latent heat of condensation and  represents a switch-on tracer for nonlinear 
heating in the absence of basic state rainfall:  equals unity in region of positive 
precipitation and zero otherwise. The heating is linear when   1.   

Equation (A.1.1e) describes the conservation of water vapor, which requires the local 
rate of change in the column-integrated water vapor Mc, to be balanced by the sum of the 
column integrated moisture convergence, perturbation precipitation rate Pr and the 

perturbation surface evaporation rate Ev. In the moisture convergence term, V


represents 
the horizontal wind and pu and ps are the pressures at the upper and lower boundary, 
respectively. The moisture convergence depends on the basic state specific humidity, q , 
which provides latent energy for the perturbation motion. We assume that the absolute 
humidity of the basic state atmosphere falls off with height exponentially with a water 
scale height H1=2.2km. The mean specific humidity in an arbitrary vertical layer between 
pressure p1 and p2 where p2>p1 is (Wang, 1988): 
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where m = H/H1 is the ratio of the density scale height H to the water vapor scale height, 
H1, and q0 is the air specific humidity at the surface. Over ocean and on the time scale of 
a few weeks and longer, q0 is well correlated with SST and may be approximated by the 
following empirical formula (Li and Wang 1994):  

   3
00 1064.794.0)(  CSSTSSTqq o .  (A.4.2a) 

Since large-scale tropical motion is stimulated by condensational heating in the middle 
troposphere, the vertical structure of the motion is dominated by the gravest baroclinic 
mode. Thus, the simplest model should consist of two layers in the free troposphere. In 
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the absence of basic flows, all advection terms in Eq. A.1.1 can be neglected for 
perturbation motion. As shown in section A.3, the motion in the two-level free 
atmosphere can be represented by a baroclinic and a barotropic mode. In the presence of 
boundary layer friction, these two vertical modes are coupled through frictional 
convergence induced vertical motion at pe, the top of the boundary layer. To save space, 
the equations for this two-level system are not given here. The interested readers can find 
them, e.g., in Wang and Rui (1990). Note that only the baroclinic mode is subjected to 
diabatic heating. The condensational heating is linked to the precipitation rate (Eq. A.4.1). 
With the limited vertical resolution of the 2-level system, the precipitation rate is 
expressed by 

  )(||/)( 0332 qqVCgqqqbP sbEseer   ,   (A.4.3) 

where e and 2 represent, respectively, vertical pressure velocities at the top of the 
boundary layer (pe) and the mid troposphere (p2); g, s, and CE are gravity, surface air 
density, and heat exchange coefficient, respectively; Vb the wind speed at surface p = ps 
that will be approximated by the model boundary-layer wind; qs the saturation specific 
humidity at the sea surface temperature, which can be calculated from the Clausius-
Clapeyron equation. Equation (A.4.3) enables the governing equations be a closed system.  

It has been demonstrated that in the absence of basic flows the magnitude of the 
barotropic mode is an order of magnitude smaller than that of the baroclinic mode (Wang 
and Rui 1990, Wang and Li 1993). Thus, a simplification can be made to neglect the 
barotropic mode by assuming a vanishing column integral of divergence in the free 
troposphere.  The baroclinic mode in the free troposphere is then governed by the 
following equations on an equatorial -plane (after 2 and e are eliminated by using 
continuity equation):  
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where u, v and  represent the lower-troposphere zonal and meridional wind and 
geopotential height, respectively (the upper-tropospheric zonal and meridional wind are –

u and –v, respectively);  denotes boundary layer barotropic wind whose components 

(ub,  vb) satisfy a linear version; C0 = 50 m/s denotes dry gravity wave speed of the free-
troposphere baroclinic mode (corresponding to the gravest baroclinic mode in a vertically 
continuous model); d = (ps - pe)/p is the dimensionless depth of the boundary layer; and 
h = p/eg, where p is one-half pressure depth of the free troposphere. In the 
thermodynamic equation (A.4.4c) there are three non-dimensional heating parameters, 
which are defined by  

bV


cqqI /3  Heating coefficient due to wave convergence,            (A.4.5a)  

ce qqB /   Heating coefficient due to frictional convergence,  (A.4.5b)  

   Heating coefficient associated with evaporation,   (A.4.5c)  cs qqqF /)( 0

27 
 



where qc = 2Cpps /(bRpLc) stands for a vertical mean specific humidity in the lower-

tropospheric layer, corresponding to a vanishing effective static stability in the presence 
of convective heating. The standard values of model parameters used in this chapter are 
the same as in Wang and Li (1994). 

2
0C

Note that, in a two-level free atmospheric model, the heating is released in the middle 
of the troposphere; the closure assumption for condensational heating is provided solely 
by conservation laws for moisture and thermal energy through the linkage between 
vertical integrated condensational heating rate and the precipitation rate in the same 
column (A.4.1). Any type of cumulus parameterization, when reduced to a two-level 
approximation, must obey the same physical principles. Therefore, use of (A.4.3) should 
not be considered a version of Kuo or any other specific parameterization schemes. The 
only approximation made in (A.4.3) is the neglect of the local change of moisture and the 
moisture in the upper-tropospheric layer. An adjustable parameter, b, is introduced to 
compensate the omission of the moisture storage in the atmosphere. The parameter b 
represents the condensation efficiency measuring the fraction of total moisture 
convergence that condenses out as precipitation. This simplification facilitates eigenvalue 
analysis. A two-level version of the time-dependent moisture equation (A.1.1e) and a 
transient boundary layer (rather than steady boundary layer) had also been used; the 
results are not qualitatively different from those derived with these simplifications. 

The equations (A.4.4a-c) and (A.4.5a,b) (with the assumption e = ) consist of a 
closed set of equations, which describes moist dynamics of a single free troposphere 
baroclinic mode that is coupled with the boundary-layer motion.. Such a model is 
referred to as a one and one half (1-1/2) layer model.  
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	where Lc is latent heat of condensation and ( represents a switch-on tracer for nonlinear heating in the absence of basic state rainfall: ( equals unity in region of positive precipitation and zero otherwise. The heating is linear when ( ( 1.  

